Green’s function for the Hodge Laplacian on some classes of Riemannian and Lorentzian symmetric spaces

نویسندگان

  • Alberto Enciso
  • Niky Kamran
چکیده

We compute the Green’s function for the Hodge Laplacian on the symmetric spaces M × Σ, where M is a simply connected n-dimensional Riemannian or Lorentzian manifold of constant curvature and Σ is a simply connected Riemannian surface of constant curvature. Our approach is based on a generalization to the case of differential forms of the method of spherical means and on the use of Riesz distributions on manifolds. The radial part of the Green’s function is governed by a fourth order analogue of the Heun equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twistor spinors on Lorentzian symmetric spaces

An indecomposable Riemannian symmetric space which admits nontrivial twistor spinors has constant sectional curvature. Furthermore, each homogeneous Riemannian manifold with parallel spinors is at. In the present paper we solve the twistor equation on all indecomposable Lorentzian symmetric spaces explicitly. In particular, we show that there are-in contrast to the Riemannian case-indecom-posab...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

On Riemannian nonsymmetric spaces and flag manifolds

In this work we study riemannian metrics on flag manifolds adapted to the symmetries of these homogeneous nonsymmetric spaces(. We first introduce the notion of riemannian Γ-symmetric space when Γ is a general abelian finite group, the symmetric case corresponding to Γ = Z2. We describe and study all the riemannian metrics on SO(2n + 1)/SO(r1) × SO(r2) × SO(r3) × SO(2n + 1 − r1 − r2 − r3) for w...

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008